Receptor- and ligand-based study of fullerene analogues: comprehensive computational approach including quantum-chemical, QSAR and molecular docking simulations.

نویسندگان

  • Lucky Ahmed
  • Bakhtiyor Rasulev
  • Malakhat Turabekova
  • Danuta Leszczynska
  • Jerzy Leszczynski
چکیده

Fullerene and its derivatives have potential antiviral activity due to their specific binding interactions with biological molecules. In this study fullerene derivatives were investigated by the synergic combination of three approaches: quantum-mechanical calculations, protein-ligand docking and quantitative structure-activity relationship methods. The protein-ligand docking studies and improved structure-activity models have been able both to predict binding affinities for the set of fullerene-C60 derivatives and to help in finding mechanisms of fullerene derivative interactions with human immunodeficiency virus type 1 aspartic protease, HIV-1 PR. Protein-ligand docking revealed several important molecular fragments that are responsible for the interaction with HIV-1 PR. In addition, a density functional theory method has been utilized to identify the optimal geometries and predict physico-chemical parameters of the studied compounds. The 5-variable GA-MLRA based model showed the best predictive ability (r(2)training = 0.882 and r(2)test = 0.738), with high internal and external correlation coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents

Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferati...

متن کامل

A comparative QSAR analysis, molecular docking and PLIF studies of some N-arylphenyl-2,2-dichloroacetamide analogues as anticancer agents

Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferati...

متن کامل

Tacrine-Flavonoid Quercetin Hybride as a MTDL Ligand against Alzheimer’s Disease with Metal Chelating and AChE, BChE, AChE-induced Aβ Aggregation Inhibition Properties: A Computational Study

AChE is an enzyme that is predominate in a healthy brain, while BChE is considered to play a minor role in regulating the levels of ACh (memory molecule) in the brain. In addition to setting the ACh level, these two enzymes also facilitate Aβ aggregation by forming stable complexes and participate in the abnormal phosphorylation of the tau protein, which also contribute to the development of Al...

متن کامل

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Molecular docking study of Papaver alkaloids to some alkaloid receptors

Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 35  شماره 

صفحات  -

تاریخ انتشار 2013